遺傳密碼

遺傳密碼

遺傳密碼(英文:Genetic code)是一組規則,將DNA或RNA序列以三個核苷酸為一組的密碼子轉譯為蛋白質的氨基酸序列,以用于蛋白質合成。幾乎所有的生物都使用同樣的遺傳密碼,稱為標準遺傳密碼;即使是非細胞結構的病毒,它們也是使用標準遺傳密碼。但是也有少數生物使用一些稍微不同的遺傳密碼。

  • 中文名稱
    遺傳密碼
  • 外文名稱
    Genetic code
  • 別名
    密碼子
  • 用途
    用于蛋白質合成

基本簡介

遺傳密碼又稱密碼子、遺傳密碼子、三聯體密碼。指信使RNA(mRNA)分子上從5'端到3'端方向,由起始密碼子AUG開始,每三個核苷酸組成的三聯體。它決定肽鏈上每一個氨基酸和各氨基酸的合成順序,以及蛋白質合成的起始、延伸和終止。

遺傳密碼

遺傳密碼是一組規則,將DNA或RNA序列以三個核苷酸為一組的密碼子轉譯為蛋白質的氨基酸序列,以用于蛋白質合成。幾乎所有的生物都使用同樣的遺傳密碼,稱為標準遺傳密碼;即使是非細胞結構的病毒,它們也是使用標準遺傳密碼。但是也有少數生物使用一些稍微不同的遺傳密碼。

基本特點

連續性

mRNA的讀碼方向從5'端至3'端方向,兩個密碼子之間無任何核苷酸隔開。mRNA鏈上鹼基的插入、缺失和重疊,均造成框移突變。

簡並性

指一個氨基酸具有兩個或兩個以上的密碼子。密碼子的第三位鹼基改變往往不影響氨基酸翻譯

擺動性

mRNA上的密碼子與轉移RNA(tRNA)J上的反密碼子配對辨認時,大多數情況遵守鹼基互補配對原則,但也可出現不嚴格配對,尤其是密碼子的第三位鹼基與反密碼子的第一位鹼基配對時常出現不嚴格鹼基互補,這種現象稱為擺動配對。

通用性

蛋白質生物合成的整套密碼,從原核生物到人類都通用。但已發現少數例外,如動物細胞的線粒體、植物細胞的葉綠體

​破解歷史

基本簡介

遺傳密碼的發現是20世紀50年代的一項奇妙想象和嚴密論證的偉大結晶。mRNA由四種含有不同鹼基腺嘌呤(簡稱A)、尿嘧啶(簡稱U)、胞嘧啶(簡稱C)、鳥嘌呤(簡稱G)的核苷酸組成。最初科學家猜想,一個鹼基決定一種氨基酸,那就隻能決定四種氨基酸,顯然不夠決定生物體內的二十種氨基酸。那麽二個鹼基結合在一起,決定一個氨基酸,就可決定十六種氨基酸,顯然還是不夠。如果三個鹼基組合在一起決定一個氨基酸,則有六十四種組合方式,看來三個鹼基的三聯體就可以滿足二十種氨基酸的表示了,而且還有富餘。

遺傳密碼

自從發現了DNA的結構,科學家便開始致力研究有關製造蛋白質的秘密。伽莫夫指出需要以三個核酸一組才能為20個氨基酸編碼。1961年,美國國家衛生院的Matthaei與馬歇爾·沃倫·尼倫伯格在無細胞系統環境下,把一條隻由尿嘧啶組成的RNA轉釋成一條隻有苯丙氨酸的多肽,由此破解了首個密碼子。隨後哈爾·葛賓·科拉納破解了其它密碼子,接著羅伯特·W·霍利發現了負責轉錄過程的tRNA。1968年,科拉納、霍利和尼倫伯格分享了諾貝爾生理學或醫學獎。

閱讀方式

破譯遺傳密碼,必須了解閱讀密碼的方式。遺傳密碼的閱讀,可能有兩種方式:一種是重疊閱讀,一種是非重疊閱讀。例如mRNA上的鹼基排列是AUGCUACCG。若非重疊閱讀為AUG、CUA、CCG、;若重疊閱讀為AUG、UGC、GCU、CUA、UAC、ACC、CCG。兩種不同的閱讀方式,會產生不同的氨基酸排列。克裏克用T噬菌體為實驗材料,研究基因的鹼基增加或減少對其編碼的蛋白質會有什麽影響。克裏克發現,在編碼區增加或移除一個鹼基,便無法產生正常功能的蛋白質;增加或移除兩個鹼基,也無法產生正常功能的蛋白質。但是當增加或移除三個鹼基時,卻合成了具有正常功能的蛋白質。這樣克裏克通過實驗證明了遺傳密碼中三個鹼基編碼一個氨基酸,閱讀密碼的方式是從一個固定的起點開始,以非重疊的方式進行,編碼之間沒有分隔設定

驗證猜想

1959年三聯體密碼的猜想終于被尼倫伯格(Nirenberg Marshall Warren)等人用“體外無細胞體系”的實驗證實。尼倫伯格等人的實驗用人工製成的隻含一種核苷酸的mRNA作模板,提供核糖體、ATP、全套蛋白翻譯所必需的酶系統和二十種氨基酸單體等等作為原料,在合適的條件下接著觀察這已知的核苷酸組成的mRNA翻譯出的多肽鏈。結果發現形成一條多個氨基酸組成的肽鏈。從而表明mRNA上的鹼基決定氨基酸。此外實驗同時也證明了mRNA上的密碼是奇數的三聯體,因為隻有奇數的三聯體才能形成互動的二個密碼。

破譯方法

尼倫伯格等發現由三個核苷酸構成的微mRNA能促進相應的氨基酸-tRNA和核糖體結合。但微mRNA不能合成多肽,因此不一定可靠。科蘭納(Khorana,Har Gobind)用已知組成的兩個、三個或四個一組的核苷酸順序人工合成mRNA,在細胞外的轉譯系統中加入放射性標記的氨基酸,然後分析合成的多肽中氨基酸的組成。

通過比較,找出實驗中三聯碼相同的部分,再找出多肽中相同的氨基酸,于是可確定該三聯碼就為該氨基酸的遺傳密碼。科蘭納用此方法破譯了全部遺傳密碼,從而和尼倫伯格分別獲得1968年諾貝爾獎金

後來,尼倫伯格等用多種不同的人工mRNA進行實驗,觀察所得多肽鏈上的氨基酸的類別,再用統計方法推算出人工mRNA中三聯體密碼出現的頻率,分析與合成蛋白中各種氨基酸的頻率之間的相關性,以此方法也能找出20種氨基酸的全部遺傳密碼。最後,科學家們還用了由3個核苷酸組成的各種多核苷鏈來檢查相應的氨基酸,進一步證實了全部密碼子。

破解原理

首先是以DNA的一條鏈為模板合成與它互補的mRNA,根據鹼基互補配對原則在這條mRNA鏈上,A變為U,T變為A,C變為G,G變為C。因此,這條mRNA上的遺傳密碼與原來模板DNA的互補DNA鏈是一樣的,所不同的隻是U代替了T。然後再由mRNA上的遺傳密碼翻譯成多肽鏈中的氨基酸序列。鹼基與氨基酸兩者之間的密碼關系,顯然不可能是1個鹼基決定1個氨基酸。

因此,一個鹼基的密碼子是不能成立的。如果是兩個鹼基決定1個氨基酸,那麽兩個鹼基的密碼子可能的組合將是42=16。這種比現存的20種氨基酸還差4種因此不敷套用。如果每三個鹼基決定一個氨基酸,三聯體密碼可能的組合將是43=64種。這比20種氨基酸多出44種,所以會產生多餘密碼子。可以認為是由于每個特定的氨基酸是由1個或多個的三聯體密碼決定的。一個氨基酸由一個以上的三聯體密碼子所決定的現象,稱為簡並

密碼子表

--第二位鹼基第二位鹼基第二位鹼基第二位鹼基
--UCAG




UUUU (Phe/F)苯丙氨酸
UUC (Phe/F)苯丙氨酸
UUA (Leu/L)亮氨酸
UUG (Leu/L)亮氨酸
UCU (Ser/S)絲氨酸
UCC (Ser/S)絲氨酸
UCA (Ser/S)絲氨酸
UCG (Ser/S)絲氨酸
UAU (Tyr/Y)酪氨酸
UAC (Tyr/Y)酪氨酸
UAA (終止)
UAG (終止)
UGU (Cys/C)半胱氨酸
UGC (Cys/C)半胱氨酸
UGA (終止)
UGG (Trp/W)色氨酸




CCUU (Leu/L)亮氨酸
CUC (Leu/L)亮氨酸
CUA (Leu/L)亮氨酸
CUG (Leu/L)亮氨酸
CCU (Pro/P)脯氨酸
CCC (Pro/P)脯氨酸
CCA (Pro/P)脯氨酸
CCG (Pro/P)脯氨酸
CAU (His/H)組氨酸
CAC (His/H)組氨酸
CAA (Gln/Q)谷氨酰胺
CAG (Gln/Q)谷氨酰胺
CGU (Arg/R)精氨酸
CGC (Arg/R)精氨酸
CGA (Arg/R)精氨酸
CGG (Arg/R)精氨酸




AAUU (Ile/I)異亮氨酸
AUC (Ile/I)異亮氨酸
AUA (Ile/I)異亮氨酸
AUG (Met/M)甲硫氨酸(起始)
ACU (Thr/T)蘇氨酸
ACC (Thr/T)蘇氨酸
ACA (Thr/T)蘇氨酸
ACG (Thr/T)蘇氨酸
AAU (Asn/N)天冬酰胺
AAC (Asn/N)天冬酰胺
AAA (Lys/K)賴氨酸
AAG (Lys/K)賴氨酸
AGU (Ser/S)絲氨酸
AGC (Ser/S)絲氨酸
AGA (Arg/R)精氨酸
AGG (Arg/R)精氨酸




GGUU (Val/V)纈氨酸
GUC (Val/V)纈氨酸
GUA (Val/V)纈氨酸
GUG (Val/V)纈氨酸
GCU (Ala/A)丙氨酸
GCC (Ala/A)丙氨酸
GCA (Ala/A)丙氨酸
GCG (Ala/A)丙氨酸
GAU (Asp/D)天冬氨酸
GAC (Asp/D)天冬氨酸
GAA (Glu/E)谷氨酸
GAG (Glu/E)谷氨酸
GGU (Gly/G)甘氨酸
GGC (Gly/G)甘氨酸
GGA (Gly/G)甘氨酸
GGG (Gly/G)甘氨酸

逆密碼表

AlaAGCU,GCC,GCA,GCGLeuLUUA,UUG,CUU,CUC,CUA,CUG
ArgRCGU,CGC,CGA,CGG,AGA,AGGLysKAAA,AAG
AsnNAAU,AACMetMAUG
AspDGAU,GACPheFUUU,UUC
CysCUGU,UGCProPCCU,CCC,CCA,CCG
GlnQCAA,CAGSerSUCU,UCC,UCA,UCG,AGU,AGC
GluEGAA,GAGThrTACU,ACC,ACA,ACG
GlyGGGU,GGC,GGA,GGGTrpWUGG
HisHCAU,CACTyrYUAU,UAC
IleIAUU,AUC,AUAValVGUU,GUC,GUA,GUG
起始AUG終止UAG,UGA,UAA

相關詞條

相關搜尋

其它詞條