計算

計算

計算,漢語詞語,有"核算數目,根據已知量算出未知量;運算"和"考慮;謀慮"兩種含義

  • 中文名稱
    計算
  • 讀音
    :jì suàn
  • 註音
    ㄐㄧˋ ㄙㄨㄢˋ
  • 關系
    與人類 由于現代人類各個課題學科繁多,涉及面廣,而分類又細。
  • 出處
    《韓非子·六反》

​基本信息

由于現代人類各個課題學科繁多,涉及面廣,而分類又細。而當今的每個學科都需要進行大量的計算。

天文學研究組織需要電腦來分析太空脈沖(pulse),星位移動;生物學家需要電腦來模擬蛋白質的折疊(protein folding)過程,發現基因組的奧秘;葯物學家想要研製治愈癌症或各類細菌與病毒的葯物,醫學家正在研製防止衰老的新辦法;數學家想計算最大的質數和圓周率的更精確值;經濟學家要用電腦分析計算在幾萬種因素考慮下某個企業/城市/國家的發展方向從而巨觀調控;工業界需要準確計算生產過程中的材料,能源,加工與時間配置的最佳方案。由此可見,人類未來的科學,時時刻刻離不開計算。而分散式計算(Distributed Computing),以其獨特的優點——便宜、高效而越來越受到社會的關註。

計算

圍棋名詞

圍棋術語。在對局的具體接觸戰中,棋手所作出的演算(有時亦指棋手的演算能力)。經計算,落子具有周密思慮的特點。與一瞬間作出判斷的著手(感覺)往往不同。計算越深遠越精確,棋力也越強。

計算教學

計算學科教學大綱

1、計算教學仍然要理解算理,掌握計算方法,但不要求千篇一律,而是重在讓學生選擇自己的方法來理解;

2、在計算速度和難度上有所降低,但十分重視學生的心算、口算及估算的能力,要求學生能結合具體情境進行估算,並解釋估算的過程;

3、能結合現實素材理解運算順序,能選擇適當的方法解決生活中的實際問題,並對結果的合理性進行判斷。

計算關系

計算不僅是數學的基礎技能,而且是整個自然科學的工具。在學校學習時必須掌握計算這一個基本生存技能;在科研中,必須運用計算攻關完成課題研究;在國民經濟,電腦及電子等行業取得突破發展都必須在數學計算的基礎上。因此計算在基礎教育,各學科的廣泛套用,高性能計算等先進技術方面都是主要方法。

廣義的計算包括數學計算,邏輯推理,文法產生式集合論的函式,組合數學的置換,變數代換,圖形圖像的變換,數理統計等;人工智慧解空間的遍歷,問題求解,圖論的路徑問題,網路安全,代數系統理論,上下文表示感知與推理,智慧型空間等;甚至包括數位系統設計(例如邏輯代數),軟體程式設計(文法),機器人設計,建築設計等設計問題。

一.數學計算中的關系

在數學計算中,一個計算式包括資料,計算符或運算元以及計算結果。因此數學計算中的關系是計算原理中必須闡明的理論基礎。

計算關系包括:資料與資料的關系,資料與計算符的關系,計算符與計算符的關系。

1.資料與資料的關系

若資料出現在一個計算式中,則稱資料存在計算關系。有些計算關系由資料的內在性質(例如系數矩陣,級數中的具體項,合式公式中的項),物理位置(一幅圖像中資料的顯示或表示,直角坐標系中曲線的關系,cpu陣列,資料的存儲)決定。

2.資料與運算符的關系

1)自然資料的表示。例如求一個曲面梯形的面積.

2)人工資料的處理(例如 程式中的資料).

3)自然資料的人工處理。例如:放大一幅圖像的一部分。

在數學計算式中,資料與運算符有資料個數,左右作用,算式形式等具體細致的關系。

3)運算符與運算符的關系

(1)整體與元素的關系.集合資料例如矩陣,從矩陣加到元素加,實現對集合元素的處理. 相同運算符對不同資料產生的計算效果可不同(例如C++語言重載多態等)。

(2)高階的運算符,常常是低階運算符的組合,再使用一個新出現的計算符,構成一個序列.例如積分級數極限計算.使復雜的資料元計算能夠實現.

在計算中,使難的計算到簡單的計算,可通過使用兩個可逆的計算過程化簡高階計算.例如:對復雜的多乘法計算式,可用對數變成加法計算,再用指數恢復. 這是一個從高到低的過程.

(3)低階運算與新運算的發現

對新形式資料的新計算,常常用到如何組合低級運算符,構建一個新的高階運算符.因此計算並不是化簡這一個過程.有些同學認為計算就是越來越簡單,因此對數學失去了興趣.實際上,還存在一個可逆的過程,即如何用低階的,離散的運算符,處理復雜的資料結構以及龐大的計算量,也是一個很有趣的問題.

在電腦器件的設計中也存在這個問題.好像電腦運算器隻有一個加法器,太簡單了.實際上如何在電腦軟硬體中使用這個加法器實現更高階計算是一個很需要動腦筋的過程(不僅是作業系統也是系統結構,組成原理的問題).此外,軟硬體的平衡,調度,是否使用專用的乘法除法電腦都需要考慮.

(4)相同的計算,常常有不同的性質.

例如.線性代數中,同樣是三矩陣乘法,在相似變換中隻要求可逆矩陣,而在二此型的標準型變換中,則要求正交矩陣.

計算是對特定資料元的計算,因此資料元的性質對運算符的選擇,計算的實現有決定性作用.

計算表達式常常有不同的形式.代數式方程,函式,行列式微積分或者數理統計計算式等等,實現對不同資料的具體計算.

相關詞條

相關搜尋

其它詞條