約瑟夫·拉格朗日

約瑟夫·拉格朗日

約瑟夫·拉格朗日(Joseph Lagrange,1736年1月25日-1813年4月11日),法國籍義大利裔數學家和天文學家。拉格朗日曾為普魯士腓特烈大帝在柏林工作了20年,被腓特烈大帝稱做“歐洲最偉大的數學家”,後受法國國王路易十六的邀請定居巴黎直至去世。拉格朗日一生才華橫溢,在數學、物理和天文等領域做出了很多重大的貢獻,其中尤以數學方面的成就最為突出。他的成就包括著名的拉格朗日中值定理,創立了拉格朗日力學等等。1813年4月3日,拿破崙授予他帝國大十字勛章,但此時的拉格朗日已臥床不起,4月11日早晨,拉格朗日逝世。
  • 中文名
    約瑟夫·拉格朗日
  • 外文名
    Joseph Lagrange
  • 國籍
    法國
  • 出生地
    義大利都靈
  • 出生日期
    1736年1月25日
  • 逝世日期
    1813年4月11日
  • 職業
    數學家、天文學家
  • 獲得榮譽
    腓特烈大帝稱做“歐洲最偉大的數學家”
  • 主要貢獻
    拉格朗日中值定理,創立了拉格朗日力學

​生平經歷

(圖)約瑟夫·拉格朗日(圖)約瑟夫·拉格朗日

18歲時,拉格朗日用義大利語寫了第一篇論文,是用牛頓二項式定理處理兩函式乘積的高階微商,他又將論文用拉丁語寫出寄給了當時在柏林科學院任職的數學家歐拉。不久後,他獲知這一成果早在半個世紀前就被萊布尼茲取得了。這個並不幸運的開端並未使拉格朗日灰心,相反,更堅定了他投身數學分析領域的信心。

1755年拉格朗日19歲時,在探討數學難題“等周問題”的過程中,他以歐拉的思路和結果為依據,用純分析的方法求變分極值。第一篇論文“極大和極小的方法研究”,發展了歐拉所開創的變分法,為變分法奠定了理論基礎。變分法的創立,使拉格朗日在都靈聲名大震,並使他在19歲時就當上了都靈皇家炮兵學校的教授,成為當時歐洲公認的第一流數學家。1756年,受歐拉的舉薦,拉格朗日被任命為普魯士科學院通訊院士。

1764年,法國科學院懸賞征文,要求用萬有引力解釋月球天平動問題,他的研究獲獎。接著又成功地運用微分方程理論和近似解法研究了科學院提出的一個復雜的六體問題(木星的四個衛星的運動問題),為此又一次于1766年獲獎。

1766年德國的腓特烈大帝向拉格朗日發出邀請時說,在“歐洲最大的王”的宮廷中應有“歐洲最大的數學家”。于是他應邀前往柏林,任普魯士科學院數學部主任,居住達20年之久,開始了他一生科學研究的鼎盛時期。在此期間,他完成了《分析力學》一書,這是牛頓之後的一部重要的經典力學著作。書中運用變分原理和分析的方法,建立起完整和諧的力學體系,使力學分析化了。他在序言中宣稱:力學已經成為分析的一個分支。

1783年,拉格朗日的故鄉建立了"都靈科學院",他被任命為名譽院長。1786年腓特烈大帝去世以後,他接受了法王路易十六的邀請,離開柏林,定居巴黎,直至去世。

這期間他參加了巴黎科學院成立的研究法國度量衡統一問題的委員會,並出任法國米製委員會主任。1799年,法國完成統一度量衡工作,製定了被世界公認的長度面積體積質量的單位,拉格朗日為此做出了巨大的努力。

1791年,拉格朗日被選為英國皇家學會會員,又先後在巴黎高等師範學院和巴黎綜合工科學校任數學教授。1795年建立了法國最高學術機構——法蘭西研究院後,拉格朗日被選為科學院數理委員會主席。此後,他才重新進行研究工作,編寫了一批重要著作:《論任意階數值方程的解法》、《解析函式論》和《函式計算講義》,總結了那一時期的特別是他自己的一系列研究工作。

1813年4月3日,拿破崙授予他帝國大十字勛章,但此時的拉格朗日已臥床不起,4月11日早晨,拉格朗日逝世。

主要成就

(圖)約瑟夫·拉格朗日(圖)約瑟夫·拉格朗日

拉格朗日在數學、力學和天文學三個學科中都有重大歷史性貢獻,但他主要是數學家,研究力學和天文學的目的是表明數學分析的威力。全部著作、論文、學術報告記錄、學術通訊超過500篇。

拉格朗日的學術生涯主要在18世紀後半期。當對數學、物理學和天文學是自然科學主體,數學的主流是由微積分發展起來的數學分析,以歐洲大陸為中心;物理學的主流是力學;天文學的主流是天體力學,數學分析的發展使力學和天體力學深化,而力學和天體力學的課題又成為數學分析發展的動力,當時的自然科學代表人物都在此三個學科做出了歷史性重大貢獻。

月球問題

拉格朗日總結了18世紀的數學成果,同時又為19世拉格朗日點[1]紀的數學研究開闢了道路,堪稱法國最傑出的數學大師。同時,他的關于月球運動(三體問題)、行星運動、軌道計算、兩個不動中心問題、流體力學等方面的成果,在使天文學力學化、力學分析化上,也起到了歷史性的作用,促進了力學和天體力學的進一步發展,成為這些領域的開創性或奠基性研究。

方程解法

在柏林工作的前十年,拉格朗日把大量時間花在代數方程和超越方程的解法上,作出了有價值的貢獻,推動了代數學的發展。他提交給柏林科學院兩篇著名的論文:《關于解數值方程》和《關于方程的代數解法的研究》。把前人解三、四次代數方程的各種解法,總結為一套標準方法,即把方程化拉格朗日點[2]為低一次的方程(稱輔助方程或預解式)以求解。

置換群

他嘗試尋找五次方程的預解函式,希望這個函式是低于五次的方程的解,但未獲得成功。然而,他的思想已蘊含著置換群概念,對後來阿貝爾和伽羅華起到啓發性作用,最終解決了高于四次的一般方程為何不能用代數方法求解的問題。因而也可以說拉格朗日是群論的先驅。

數論

在數論方面,拉格朗日也顯示出非凡的才能。他對費馬提出的許多問題作出了解答。如,一個正整數是不多于4個平方數的和的問題等等,他還證明了圓周率的無理性。這些研約瑟夫·拉格朗日點究成果豐富了數論的內容。

冪級數

在《解析函式論》以及他早在1772年的一篇論文中,在為微積分奠定理論基礎方面作了獨特的嘗試,他企圖把微分運算歸結為代數運算,從而拋棄自牛頓以來一直令人困惑的無窮小量,並想由此出發建立全部分析學。但是由于他沒有考慮到無窮級數的收斂性問題,他自以為擺脫了極限概念,其實隻是回避了極限概念,並沒有能達到他想使微積分代數化、嚴密化的目的。不過,他用冪級數表示函式的處理方法對分析學的發展產生了影響,成為實變函式論的起點。

分析力學

拉格朗日也是分析力學的創立者。拉格朗日在其名著《分析力學》中,在總結歷史上各種力學基本原理的基礎上,發展達朗貝爾、歐拉等人研究成果,引入了勢和等勢面的概念,進一步把數學分析套用于質點和剛體力學,提出了運用于靜力學和動力學的普遍方程,引進廣義坐標的概念,建立了拉格朗日方程,把力學體系的運動方程從以力為基本概念的牛頓形式,改變為以能量為基本概念的分析力學形式,奠定了分析力學的基礎,為把力學理論推廣套用到物理學其他領域開闢了道路。

拉格朗日方法

他還給出剛體在重力作用下,繞旋轉對稱軸上的定點轉動(拉格朗日陀螺)的歐拉動力學方程的解,對三體問題的求解方法有重要貢獻,解決了限製性三體運動的定型問題。拉格朗日對流體運動的理論也有重要貢獻,提出了描述流體運動的拉格朗日方法。

行星問題

拉格朗日的研究工作中,約有一半同天體力學有關。他用自己在分析力學中的原理和公式,建立起各類天體的運動方程。在天體運動方程的解法中,拉格朗日發現了三體問題運動方程的五個特解,即拉格朗日平動解。此外,他還研究了彗星和小行星的攝動問題,提出了彗星起源假說等。

數學領域榮譽

近百餘年來,數學領域的許多新成就都可以直接或間接地溯源于拉格朗日的工作。所以他在數學史上被認為是對分析數學的發展產生全面影響的數學家之一。被譽為“歐洲最大的數學家”。

“三L”

法國18世紀後期到19世紀初數學界著名的三個人物:拉格朗日(josephlouislagrange)、拉普拉斯(pierre-simonlaplace)和勒讓德(adrien-marielegendre)三個人的姓氏的第一個字母為“L”,又生活在同一時代,所以人們稱他們為“三L”。

數學貢獻

(圖)約瑟夫·拉格朗日(圖)約瑟夫·拉格朗日

拉格朗日科學研究所涉及的領域極其廣泛。他在數學上最突出的貢獻是使數學分析與幾何與力學脫離開來,使數學的獨立性更為清楚,從此數學不再僅僅是其他學科的工具。

拉格朗日總結了18世紀的數學成果,同時又為19世紀的數學研究開闢了道路,堪稱法國最傑出的數學大師。同時,他的關于月球運動(三體問題)、行星運動、軌道計算、兩個不動中心問題、流體力學等方面的成果,在使天文學力學化、力學分析化上,也起到了歷史性的作用,促進了力學和天體力學的進一步發展,成為這些領域的開創性或奠基性研究。

在柏林工作的前十年,拉格朗日把大量時間花在代數方程和超越方程的解法上,作出了有價值的貢獻,推動了代數學的發展。他提交給柏林科學院兩篇著名的論文:《關于解數值方程》和《關于方程的代數解法的研究》 。把前人解三、四次代數方程的各種解法,總結為一套標準方法,即把方程化為低一次的方程(稱輔助方程或預解式)以求解。

他嘗試尋找五次方程的預解函式,希望這個函式是低于五次的方程的解,但未獲得成功。然而,他的思想已蘊含著置換群概念,對後來阿貝爾和伽羅華起到啓發性作用,最終解決了高于四次的一般方程為何不能用代數方法求解的問題。因而也可以說拉格朗日是群論的先驅。

數論方面,拉格朗日也顯示出非凡的才能。他對費馬提出的許多問題作出了解答。如,一個正整數是不多于4個平方數的和的問題等等,他還證明了圓周率的無理性。這些研究成果豐富了數論的內容。

在《解析函式論》以及他早在1772年的一篇論文中,在為微積分奠定理論基礎方面作了獨特的嘗試,他企圖把微分運算歸結為代數運算,從而拋棄自牛頓以來一直令人困惑的無窮小量,並想由此出發建立全部分析學。但是由于他沒有考慮到無窮級數的收斂性問題,他自以為擺脫了極限概念,其實隻是回避了極限概念,並沒有能達到他想使微積分代數化、嚴密化的目的。不過,他用冪級數表示函式的處理方法對分析學的發展產生了影響,成為實變函式論的起點。

近百餘年來,數學領域的許多新成就都可以直接或間接地溯源于拉格朗日的工作。所以他在數學史上被認為是對分析數學的發展產生全面影響的數學家之一。被譽為“歐洲最大的數學家”。

力學貢獻

(圖)約瑟夫·拉格朗日(圖)約瑟夫·拉格朗日

拉格朗日也是分析力學的創立者。拉格朗日在其名著《分析力學》中,在總結歷史上各種力學基本原理的基礎上,發展達朗貝爾、歐拉等人研究成果,引入了和等勢面的概念,進一步把數學分析套用于質點和剛體力學,提出了運用于靜力學動力學的普遍方程,引進廣義坐標的概念,建立了拉格朗日方程,把力學體系的運動方程從以力為基本概念的牛頓形式,改變為以能量為基本概念的分析力學形式,奠定了分析力學的基礎,為把力學理論推廣套用到物理學其他領域開闢了道路。

他還給出剛體重力作用下,繞旋轉對稱軸上的定點轉動(拉格朗日陀螺)的歐拉動力學方程的解,對三體問題的求解方法有重要貢獻,解決了限製性三體運動的定型問題。拉格朗日對流體運動的理論也有重要貢獻,提出了描述流體運動的拉格朗日方法。

拉格朗日的研究工作中,約有一半同天體力學有關。他用自己在分析力學中的原理和公式,建立起各類天體的運動方程。在天體運動方程的解法中,拉格朗日發現了三體問題運動方程的五個特解,即拉格朗日平動解。此外,他還研究了彗星小行星的攝動問題,提出了彗星起源假說等。

人物評價

拉格朗日是18世紀的偉大科學家,在數學、力學和天文學三個學科中都有歷史性的重大貢獻。但他主要是數學家,拿破崙曾稱贊他是“一座高聳在數學界的金字塔”,他最突出的貢獻是在把數學分析的基礎脫離幾何與力學方面起了決定性的作用。使數學的獨立性更為清楚,而不僅是其他學科的工具。同時在使天文學力學化、力學分析化上也起了歷史性作用,促使力學和天文學(天體力學)更深入發展。由于歷史的局限,嚴密性不夠妨礙著他取得更多的成果。

拉格朗日的著作非常多,未能全部收集。他去世後,法蘭西研究院集中了他留在學院內的全部著作,編輯出版了十四卷《拉格朗日文集》,由J.A.塞雷(Serret)主編,1867年出第一卷,到1892年才印出第十四卷。第一卷收集他在都靈時期的工作,發表在《論叢》第一到第四卷中的論文;第二卷收集他發表在《論叢》第四、五卷及《都靈科學院文獻》第一、二卷中的論文;第三卷中有他在《柏林科學院文獻》 (1768—1769年, 1770—1773年)發表的論文; 第四卷刊有他在《柏林科學院新文獻》(1774—1779年, 1781年,1783)年發表的論文;第五卷刊載上述刊物(1780—1783年,1785—1786年,1792年,1793年,1803年)發表的論文;第六卷載有他未在巴黎科學院或法蘭西研究院的刊物上發表過的文章;第七卷主要刊登他在師範學校的報告;第八卷為1808年完成的《各階數值方程的解法論述及代數方程式的幾點說明》(Traité des équations numériquesde tous les degrés, avec des notes sur plusieurs points de lathéorie des equations algébriques)一書;第九卷是1813年再版的《解析函式論,含有微分學的主要定理,不用無窮小,或正在消失的量,或極限與流數等概念,而歸結為代數分析藝術》一書;第十卷是1806年出版的《函式計算教程》一書;第十一卷是1811年出版的《分析力學》第一卷,並由J.貝特朗(Bertrand)和G.達布(Darboux)作了注解;第十二卷為《分析力學》的第二卷,仍由上述二人注解,此二卷書後來在巴黎重印(1965);第十三卷刊載他同達朗貝爾的學術通訊;第十四卷是他同孔多塞,拉普拉斯,歐拉等人的學術通訊,此二卷都由L.拉朗(Lalanne)作注解。還計畫出第十五卷,包含1892年以後找到的通訊,但未出版。

相關詞條

其它詞條